ABSTRACT

Background: Cardiac resynchronization therapy (CRT) is a wellestablished treatment in selected patients with drug-refractory heart failure. In order to improve the response rate of patients treated with CRT, imaging can provide information on mechanical dyssynchrony, viability, and cardiac venous anatomy. Two-dimensional speckle tracking imaging, a new echocardiographic method could be useful in assessing dyssynchrony and regional contractility.

Aim of the work: the aim of the present study was to evaluate the ability of longitudinal strain and strain rate imaging by two-dimensional speckle tracking to predict echocardiographic response under CRT.

Subjects and Methods: We studied 28 consecutive CRT patients with class II-IV heart failure, ejection fraction (EF) \leq 35%, with LBBB and QRS with \geq 120 ms or non LBBB with QRS \geq 150 ms. baseline dyssynchrony was evaluated by speckle tracking longitudinal strain. Prespecified outcome variables were EF response, reverse remodeling, 6 MWTs improvement and quality of life questionnaire in the following 3 months.

Results: After 3 month follow up patients one patient was excluded as he died before he completed 3 months follow up period then the pts were divided into 19 pts (70%) responders and 8 pts (29.6%) nonresponders according reduction of LVESV by $\geq 15\%$. There was statistically significant difference between responders and non-responders for their baseline speckle-tracking longitudinal dyssynchrony predicted CRT response according to significant reduction in LVESV (reverse remodeling) as Bs-Bl with cutoff value 135 ms and Ms-Ml with cutoff value 125 ms showed high sensitivity and specificity 95% and 100 % respectively for both respectively but Ba-Bi with cutoff value 135 ms showed lower sensitivity and specificity 85 % and 87.5 % respectively

Conclusion: The LV dyssynchrony assessed by speckle tracking using longitudinal strain was predictive to response to CRT

Key words: Heart Failure – CRT – speckle tracking